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Dbrane phase transitions and monodromy inK-theoryq
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Abstract

Majumder and Sen have given an explicit construction of a first order phase transition in a
non-supersymmetric system of Dbranes that occurs when theB-field is varied. We show that the
description of this transition in terms ofK-theory involves a bundle ofK groups of non-commutative
algebras over the Kähler cone with nontrivial monodromy. Thus the study of monodromy inK

groups associated with quantized algebras can be used to predict the phase structure of systems of
(non-supersymmetric) Dbranes. © 2000 Elsevier Science B.V. All rights reserved.
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A major development in string theory over the past couple of years has been an increasing
understanding of non-supersymmetric Dbranes and their dynamics, initiated largely by Sen
[1–5]. The relevance ofK-theory for the classification of Dbrane charges was pointed
out by Witten [6] following earlier work of Minasian and Moore [7]. Reviews of these
developments are [8–10]. The motivation for the present work was an intriguing observation
made by Majumder and Sen [11]. Using an exact conformal field theory description [12]
of non-supersymmetric Dbranes on a K3 surface, they found three different phases in the
region on the moduli space where the surface looks like an orbifoldX = T 4/Z2). The
phase diagram in Fig. 1 represents different states (labeled as I, II and III) of two Dbranes2

wrapped over exceptional 2-cyclesS1 andS2 in X, which correspond to fixed points in the
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Fig. 1. Phase diagram in theR–ζ plane.

orbifold limit. In phase I the two Dbranes recombine into a single Dbrane wrapped over a
non-supersymmetric cycle with the homology class [S] = [S1] + [S2]. This happens when
the minimal radius ofT 4 becomes less than the difference of theB-field fluxes through
S1 andS2, ζ < R with the appropriate normalization. From the analysis of the tachyon
potential [11]

V (α) ∝
(

1
4(Rc − R) cos(απ) + ζ cos(1

2απ)
)

, (1)

(α is the parameter labeling the marginal deformation, normalized so thatα = 0 mod 2
represents the pair of Dbranes andα = 1 mod 2 represents the non-BPS brane) one can see
that transitions between regions I and II and between regions I and III are second order.
There is no discontinuous jump in the location of the minimum of the tachyon potential
in these transitions. On the other hand, as we pass through the phase boundary between
regions II and III the Dbranes flip their orientation via a first order phase transition. The
three phases coexist at the critical radiusRc(ζ = 0), where the anti-periodic tachyonic
mode becomes exactly marginal.

We want to understand this phase diagram from the point of view ofK-theory and see if
such transitions are possible at all.K groups classify Dbrane charges [6,7]. Therefore, this
phase diagram indicates that a certain element of aK group is mapped to an appropriate
inverse as one crosses the transition line between phases II and III. In other words, it means
that aK group element undergoes a monodromy as one goes around the pointRc in the
R–ζ plane. Indeed, because there is no discontinuity along the lines of the second order
phase transitions between phases II and I, and between phases I and III, we do not expect
to see these lines in the deformation of theK groups. What this means precisely, and what
can be predicted from this point of view, constitute the topics of the present paper.

As we explain below, the observation of Majumder and Sen is a rather general phe-
nomenon inK-theory, and we will formulate the explicit condition when it takes place for
a general spaceX. It will turn out that the appropriate setting for the analysis is algebraic
K-theory (for introductory treatments see [13,14]), i.e. instead of a spaceX we consider
the ring (algebra)A of continuous functions onX. Although the algebraicK-theory ofA is
isomorphic to topologicalK-theory ofX for smoothX, the former has two major benefits:
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• Even if the geometry ofX is singular,Amay remain a well-defined algebra. For example,
if X is a quotient space with possible fixed point singularities,A is a crossed product
algebra [16–19].

• Majumder and Sen consider a ‘blow-up’ ofX corresponding to aB-field flux through
2-cycles inX. Such non-geometric ‘defomations’ ofX have a natural interpretation in
terms of non-commutative deformations ofA [15–20].

An attempt to formulate string theory in algebraic terms can be found in [21].
We briefly recall the definition ofK groups that measure Dbrane charges. In topolog-

ical K-theoryK0(X) is defined as the group of pairs(E, F ) of vector bundles modulo
the equivalence relation(E, F ) ∼ (E ⊕ H, F ⊕ H ′) which allows creation and annihi-
lation of brane–anti-brane pairs with isomorphic gauge bundlesH andH ′. In algebraic
K-theory the Grothendieck groupK0(A) is defined in a similar way with “bundles overX”
replaced by “projective modules overA”. In practice, however, it is convenient to use an-
other (equivalent) definition ofK0(A) via idempotents inMn(A), the set ofn×n matrices,
with coefficients inA. To allow direct sum and tensor product of idempotents, one actually
has to consider the direct limitM∞(A) = lim Mn(A) with the inductive limit topology.
Then unitary equivalence classes of projection operatorsα:

α ∗ α = α, (2)

in M∞(A) form a semigroupS ≡ S(A) under addition. The Grothendieck group associated
with this semigroup is constructed as follows. OnS × S define an equivalence relation
(a, b) ∼ (a′, b′) if a + b′ = a′ + b. ThenK0(A) = S × S/ ∼. By definitionK0 is a
covariant functor, i.e. any homomorphismφ : A → B of C∗-algebrasA andB induces a
homomorphismφ∗ : K0(A) → K0(B). If we define a suspension as the set of continuous
functions from the real line toA, ΣA ≡ C(R → A) ∼= A ⊗ C(R), we may introduce
the higherK groupK1(A) ∼= K0(ΣA). Equivalently, one can defineK1(A) as the abelian
group of equivalence classes of invertible elements inM∞(A), with equivalence defined
by right translation by elements of the group that are in the identity component. Complex
Bott periodicity is the statement thatK0(Σ

2A) = K0(A).
According to Connes et al. [15], the presence of a uniformB-field can be interpreted in

terms of a quantization of the function algebra of the manifold, à la Fedosov [22]. Their
deep insight has led to numerous developments [16–20] on this theme. We are interested in
a B-field which is not uniform [11]. Since no precise relation to deformation quantization
has been established for this case, we assume that a generalB-field leads to the deformed
algebraA with the∗ product defined by Kontsevich [23]. In fact, as it will become clear in
a moment, the results of this paper do not depend on this assumption; one just has to know
that turning on aB-field leads tosomeassociative deformation of a product onA:

f ∗τ g = fg + τf ∗1 g + · · · , (3)

whereτ is the deformation parameter. In the following we will only make the∗ symbol
explicit when we need to emphasize the deformed product. The∗ product depends not just
on B but also on the Kähler formJ . However, this dependence is such that whenB = 0
the algebra is not expected to undergo any deformation [15,20]. This is perhaps surprising
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at first sight since the natural variable in string theory isB + iJ , but it follows from the
modular-like invariance of the∗ product underT duality.

Thus, over each point in the(R, ζ ) plane we have an algebra in which the product depends
on the value ofz ≡ (R, ζ ). We shall take the undeformed algebra in our model to be the
algebra atz = Rc. Therefore we define the deformation parameterτ ≡ z − Rc. Computing
theK groups of these algebras at each point in thez-plane, we obtain a bundle ofK groups.
TheseK groups at different points on the(R, ζ ) plane a priori have little to do with each
other.

However, the important point is thatK groups are, generally speaking,rigid under defor-
mation quantization [24]. This fact is the conceptual reason why BPS states survive turning
on aB-field and why BPS conditions in the presence of aB-field are very simple to state in
terms of the∗ product [20]. Now it is easy to see the deformation of (2) under quantization.
Given a projectionp in A0, whereA0 is the algebra before quantization, we need to find
a projectionpτ in Aτ such thatpτ ∗τ pτ = pτ and limτ→0pτ = p. This can be solved
recursively as a power series, or by using the differential equation

p′
τ ∗τ pτ + pτ ∗τ p′

τ + pτ1 ∗τ pτ = p′
τ , (4)

where1∗τ denotes the derivative of theτ dependence in the∗ product, with the obvious
boundary condition atτ = 0. Thus there is a natural manner in which the fibers of theK

group bundle are all isomorphic, so it actually is a fibber bundle. Given this isomorphism,
we can meaningfully consider themonodromyof sections of this fibber bundle as we move
aroundτ = 0.

In supersymmetric cases such monodromies are very well understood from the relation
between the Mukai vector [15]:

Q = ch(E)e−([B]/2π i) ∈ H even(X,Z), (5)

and the Chern character of a projective moduleE. In physics this expression appears in
the Chern–Simons coupling of Ramond–Ramond fields. Let us explain the origin of the
monodromy in algebraicK-theory by a simple example of Type IIB compactification on
a non-commutative torus. An ordinary torusT 2 can be represented as a quotient space
X = S1 ×R/Z. The corresponding crossed product algebraA0 = C(S1) ×Z is generated
by two unitary operators that commute with each other. Its non-commutative deformation
Aτ = C(S1) ×τ Z is defined by ‘twisting’ the multiplication by aτ ∈ Aut(C(S1)) :
ag = gτ(a) for all a ∈ C(S1) andg ∈ Z. The deformed algebraAτ is Morita equivalent
to a non-commutative torus which is believed to describe a compactification on a torus
with a B-field flux [15]. BecauseAτ is still a crossed product algebra, we can use the
Pimsner–Voiculescu exact sequence [25] to compute itsK groups:

· · · → K0(C(S1))
Id−τ→ K0(C(S1)) → K0(C(S1) ×τ Z) → K1(C(S1)) → · · · . (6)

First of all, from this sequence we see the result, alluded to above, thatK-theory is rigid
under deformation quantization. This follows from the fact that the map Id−τ is homotopic
to zero, so that the Pimsner–Voiculescu exact sequence reduces to a short exact sequence
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and splits. The same statement is also true in realK-theory [26]. Furthermore, from (6) we
findK0(Aτ ) = Z+τZ, so that charges of odd-dimensional Dbranes undergo a monodromy:

Q →
(

1 1
0 1

)
Q,

as theB-field changes by a period.
In the non-supersymmetric situation considered by Majumder and Sen [11], we expect

monodromy in going around the pointRc in thez-plane. We wish to stress here that in the
moduli space of K3 with aB-field this monodromy does not correspond to any non-trivial
element of the first fundamental group. We do not have a sufficiently detailed understanding
of theK group bundle in the Majumder–Sen case to compute this monodromy exactly. How-
ever, we shall now explicitly construct a simple local model showing how such monodromy
arises.

If α is the projection corresponding to phase II, in going around a small loop centered
atRc we expect to find a projection associated with the non-BPS Dbrane with the opposite
charge. What is the projection associated with such an oppositely charged Dbrane? The
sum of a charge and the opposite charge should be equivalent to a trivial bundle, but−α is
not a projection so we have to work a little harder to find an inverse. Given a projectionα,

and a projectionπn such thatπn > α, we note that

(πn − α)2 = πn − πnα − απn + α = πn − α, (7)

soπn − α is also a projection. For an appropriate choice ofπn this is a natural candidate
for the projection associated with the oppositely charged Dbrane. The physical motivation
for this answer is based on the description of Dbranes as topological defects in a gauge
bundle of higher dimensional branes [6]. We say that two Dbranes carry opposite charges
if they are represented by the gauge bundlesE andF , such that the ‘total’ bundleE ⊕ F

is isomorphic to a trivial bundle. It is easy to see thatα andπn − α satisfy the expected
property provided thatπn > α.

Now the condition for monodromy aroundRc is

α(τe2iπ ) = U(πn − α(τ))U†, (8)

where|τ | is the radius of a small circle aroundRc in thez-plane, see Fig. 1. Evaluating at
τ = 0 we find a condition in the undeformedK0(A0) group:

α0 = U(πn − α0)U
†. (9)

As a simple example, the reader may find it helpful to keep in mind the following
two-dimensional model:

α0 =
(

1 0
0 0

)
, π2 =

(
1 0
0 1

)
, U =

(
0 1
1 0

)
, (10)

where we assume thatU does not depend onz. This may be too strong an assumption in
the general case, but suffices for the local model we construct.
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It is clear that order by order one can reconstruct the solution to (2) and (8) as a power
series inτ :

α(z) = α0 + τα1 + τ2α2 + · · · (11)

The exact form of the solution will depend on the details of the∗ product. To see this, we
write down the first order equations that follow from (2) and (8):

{α1, U} = 0, α1 − {α1, α0} = α0 ∗1 α0. (12)

Proceeding in the same fashion, we expect to find solutions to (8) only at specific points
on the moduli space (in our case, on thez-plane). These points represent the endpoints of
the phase boundaries where some tachyonic modes become massless [11].

To summarize, in our local model, we have shown that when Eq. (8) has a solution,
there is a section of theK group bundle with monodromy appropriate for describing the
physics of a first order phase transition between different stable configurations of Dbranes.
ThusK-theory combined with a knowledge of the deformation of the algebra product as a
function of moduli (in this case the difference in theB-field flux through the 2-cycles) can
be used to predict the phase structure of systems of (non-supersymmetric) Dbranes.

In conclusion we mention that there are other kinds of phase transitions when a sheafE

associated with a Dbrane becomes unstable or split. The equation of the phase boundary
follows from the Bogomolov condition:∫

X

(
2rc2 − (r − 1)c2

1

)
∧ J (n−2) = 0, (13)

for a sheafE of rankr over ann-dimensional spaceX to be strictly stable with respect to
a Kähler formJ.
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